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Super-
Kamiokande

Water Cherenkov Neutrino Experiments
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Current generation Super-K and T2K and next generation 
Hyper-K are world-leading neutrino experiments.

Broad & ambitious physics programmes covering many 
neutrino sources as well as proton decay measurements.

Water Cherenkov detector technology provides huge target 
mass with excellent particle ID and reconstruction capabilities.

Intermediate Water 
Cherenkov Detector (IWCD)

~ 295 km~ 1 km

J-PARC 𝜈 beam

280 m

Near detectors
Proton decay

Solar 𝜈
Atmospheric 𝜈 Supernova 𝜈

Hyper-Kamiokande

Water Cherenkov 
Test-beam 
Experiment 

(WCTE) at CERN

2020 - 2027

See also: M. Smy 
(Hyper-K, Mon 4:10pm)

L. Kormos (T2K, Mon 2:20pm
M. Friend (J-PARC, Wed 8:30am)

See also: M. Posiadala-Zezula 
(Super-K, WG1 Fri 11:59am)

See also:
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71
 m

68 m
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Intermediate Water Cherenkov Detector

● Measures ν flux and cross-section of 
beam at ~1 km from source

● Moves vertically in ~50 m tall pit
○ spans off-axis angles of ν beam 

for different ν energy spectra

● 6 m tall x 8 m diameter tank with 
~500 multi-PMT modules (mPMTs)
○ 8 cm PMTs:

■ Better position resolution
■ < 1 ns timing resolution

○ Additional directionality information
○ mPMTs will also be used for WCTE
○ Also in consideration for portion of far 

detector photo-coverage

Hyper-K’s WC Detectors

See also: R. Akutsu (mPMTs for
IWCD & WCTE, WG6 Tue 3pm)

● 71 m tall x 68 m diameter
○ 8 x increase in fiducial 

mass over Super-K
● 20,000 B&L 50 cm PMTs 

= 20% photo-coverage
○ 1.5 ns timing res. (half SK)
○ 2x efficiency of SK PMTs

● Additional coverage from 
multi-PMT modules

○ Also used for in-situ 
calibration of 50cm PMTs

2020 - 2027

See also: S. Izumiyama (PMT electronics 
for Hyper-K, WG6, Tue 3:20pm)

Hyper-K Far Detector
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Classification: Particle type identification (PID)
● Different particles produce different types of rings

Regression: reconstructing particle’s properties:
● Location and time of PMT hits allows triangulating position and direction
● Amount of charge observed at PMTs gives estimate of energy

gamma
e+

e-

Reconstruction in WC detectors
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electronmuon
neutral 
pion

gamma

gamma
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Limit of traditional maximum-likelihood reconstruction methods (fiTQun) is 
being reached
● Computation time is becoming a limiting factor

○ Larger far detector with more PMTs increases computation time
○ Smaller intermediate detector requires scaled down resolutions
○ Improving resolutions requires more complex algorithms with fewer 

approximations
ML and deep neural networks have potential to push reconstruction further
● Very successful in areas of computer vision and image processing
● Potential to use all information without detector model approximations
● Very fast to run once neural networks have been trained

○ fiTQun on CPU: 1 event takes more than 1 minute
○ ML reconstruction on GPU: 100,000 events per minute
○ Opens opportunities for analyses with huge datasets not currently possible

Machine learning reconstruction for WC
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See also: A. Yankelevich (ML for solar ν in SK, WG1+WG6 Thu 3:04pm)
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Deep network architectures for IWCD
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Convolutional Neural Network based on ResNet-18 
● Full cylinder of mPMTs is unwrapped onto flat image
● One pixel per multi-PMTt q x y z

t q x y z

t q x y z

t q x y z

t q x y z

t q x y z

t q x y z

t q x y z

features
PointNet MLP (convolution over point cloud features)
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repeat
...

P(μ±)P(e±) P(π0) P(γ)

1. Convolution over mPMTs 2. Convolutions & down-samples

3. Fully 
connected 

neural 
network

Initial convolution over 
the mPMT channels

Point Cloud Neural Network based on PointNet
● Applies to point-cloud of PMT hits in 3D space
● Uses 1x1 convolutions and learns transformations applied to 

points
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Image-like data for CNN

Full cylinder of mPMTs is unwrapped onto flat 
image
● One pixel per multi-PMT
● Charge (& time) of 19 PMTs per mPMT
● No special treatment at barrel / 

end-cap boundary
○ Alternative projections from cylinder to grid 

have also been explored

19 for charge
+19 for time

multi-PMT
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Data Transformations and Augmentation
Applying random transformations using detector symmetry effectively increases dataset
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Vertical flip 
of whole 
image

Horizontal flip of 
whole image

Vertical flip of 
end-caps

horizontal flips of 
each half of barrel

Rearranging and duplicating the geometrical 
surface has several advantages
● Less dependence on “choice” of slice along 

barrel to unwrap cylinder
● All segments appear exactly twice with minimal 

blank space
● Circular boundary conditions in both directions
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● νμ beam produces mostly μ, need rejection 
factor of 1000 for νe measurement 

● Improved performance across energy range
● ResNet performs slightly better than PointNet 

for e vs μ classification

Classification for PID in IWCD

e efficiency when 
rejecting 99.9% of μ-

e efficiency when rejecting 80% of γ

9

● γ and e almost indistinguishable in water 
Cherenkov detectors

● Discrimination has not been possible before
● PointNet performs better than ResNet for e vs γ 

classification



NuFact 2022, Salt Lake City, Utah, 4th August 2022

Classification for neutron captures
● At lower energies, images can be very sparse and CNNs tend 

to perform less well
● Alternative networks like graph networks may be more useful

○ Each PMT is a node on a graph
○ Time, charge, position are node features
○ Graph can be defined by nearest neighbors in Graph 

Convolution Network (GCN, arXiv:1609.02907)
○ Graph can be learned dynamically in Dynamic Graph 

Convolutional Neural Network (DGCNN, arXiv:1801.07829)
● Tested classifying neutron captures vs electron 

background
○ Signal: ~8 MeV gamma cascade
○ Background: beta decays of isotopes produced by 

cosmic muon spallation
○ Compared performance to baseline using BDT 

(XGBoost) with features including number of hits, hit 
isotropy, etc.

B. Jamieson, et al., arXiv:2206.12954
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Neutron mis-ID rate

DGCNN outperforms BDT baseline, 
while GCN underperforms
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Position, direction, 
energy reconstruction

Using same IWCD data and networks as classification
● Output reconstructed quantities instead of PID variables
● Improved performance over traditional reconstruction 

(fiTQun), particularly for particles close to detector wall

11



NuFact 2022, Salt Lake City, Utah, 4th August 2022

Need to develop ability to identify and reconstruct multi-ring and multi-vertex events
● Single-neutrino interactions can produce various multi-ring event topologies
● Pile-up of neutrino interactions is possible for IWCD due to proximity to beam source

Single-neutrino, 
single-ring

νμ
Pile-up event

νμ
ν

e
Two 

neutrinos 
from the 

same 
beam spill

Charged pion 
scattering

νπ±
Neutral pion 
decay to γs

νπ0
γ

γ

Multiple outgoing 
particles

νπ±

μ

Muon quickly 
decays to electron 

ν
μ

e

Multi-ring and multi-vertex events
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Segmentation networks Charge data π0 event

● Classification networks can be extended to 
perform segmentation
○ Deconvolutions and upsampling reverse 

convolutions and downsampling
○ Provides output value for each pixel
○ Currently using U-Net and FRRN

● Starting development with π0 events
○ π0 decay to produce two γ rings
○ Higher energy π0 have overlapping rings

13

Segmentation 
truth

gamma

gamma

Dark noise

Multi-parent



NuFact 2022, Salt Lake City, Utah, 4th August 2022

Segmentation results
Charge data

Works well with 
separated or partially 
overlapping rings

14

Segmentation 
truth

Reconstructed 
segmentation 
using FRRN
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Segmentation results
Charge data

Poor reconstruction 
with some more 
overlapping rings
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Segmentation 
truth

Reconstructed 
segmentation
using FRRN
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Generative networks create synthetic data, with several 
possible applications

● Often used for faster or more accurate 
simulations or modifying data for different 
purposes

● Novel use as part of hybrid approach with 
maximum likelihood event reconstruction

○ Limitations of traditional reconstruction arise 
from computational complexity of likelihood 
function

○ Generative network can quickly produce 
Cherenkov rings used in likelihood 
calculation without physics model 
approximations

○ Predict parameters of Gaussian mixture 
model for charge & time likelihood functions 
at each PMT

Generative networks
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 M. Jia, et al., arXiv:2202.01276
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Generative networks create synthetic data, with several 
possible applications

● Generative Adversarial Networks (GANs)
○ Train generative network and classifier together
○ Classifier is trained to distinguish generated data 

from training data
○ Generative network is trained to generate data the 

classifier cannot distinguish
● Can train using real data (e.g. calibration data, control 

samples, or general ‘unlabelled’ data)
○ Avoid biases / systematics from imperfect detector 

simulation models
● Potential use for noise reduction

○ Train generative network to produce de-noised 
events from noisy events

● Potential uses for detector calibration
○ Train network to modify simulated events to more 

closely match real data

GAN generated events Geant4 simulated events

Inaccurate drawing of cat
(simulated event)

Photo-realistic image of cat
(looks like real data)

Generative networks
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Hyper-Kamiokande, the next-generation water Cherenkov neutrino detector has begun 
construction to start operation in 2027
● Both the far detector and IWCD will require new techniques to improve 

reconstruction, suppress backgrounds and reduce systematics

Machine learning can bypass the model approximations of old methods
● ResNet CNN and PointNet architectures already outperforming traditional methods

○ Improved reconstruction of particle position, direction and energy
○ Classification of  particle types improves on existing selections and enables 

new analyses
● Additional benefit of huge increase in speed of reconstruction

Exploring other areas where machine learning can provide benefits
● Segmentation of multi-ring and multi-vertex events looks promising
● Generative networks allow hybrid ML/traditional reconstruction and novel 

approaches to handle detector calibration and modelling

Summary

18

WatChMaL.org
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Appendix
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Hyper-K Detector

20

8 x increase in fiducial mass over Super-K
● 71 m tall x 68 m diameter = 258 kt total mass

                                            188 kt fiducial mass

New photo-detector technology for increased sensitivity
● 20,000 B&L 50 cm PMTs = 20% photo-coverage

○ 1.5 ns timing resolution (half that of SK PMTs)
○ Double quantum efficiency of SK PMTs

● Additional photo-coverage from multi-PMT modules
○ 8 cm PMTs grouped in modules of 19 PMTs
○ Improved position, timing, direction resolution
○ Also used for in-situ calibration of 50cm PMTs

71
 m

68 m

258 kton 
total volume

50cm B&L PMT multi-PMT

2020 - 2027
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February 2020: Budget approved by Japanese government

May 2020: Univ. of Tokyo President and KEK Director General 
signed MOU:
 Univ. of Tokyo to construct & operate Hyper-K detector
 KEK to upgrade & operate J-PARC neutrino beam Hyper-Kamiokande

The Hyper-K Experiment

21

Access tunnel

Construction has 
started for operation 

to begin in 2027!
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Hyper-K far detector

3rd generation of WC detectors at Kamioka

8 x increase in fiducial mass over Super-K
72 m tall x 68 m diameter = 258 kt total mass
                                            188 kt fiducial mass

Baseline design: 40,000 B&L 50 cm PMTs
= 40% photo-coverage

New photo-detector technology to
provide increased sensitivity

50cm MCP PMT

Hyper-K’s WC detectors

Hyper-Kamiokande

Super-
Kamiokande

Kamiokande

50cm B&L PMT

22
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Hyper-K’s WC detectors
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Intermediate detector (IWCD)

Located ~ 1 km from beam source
6 m tall x 8 m diameter inner detector
~ 500 multi-PMT modules

Measure combination of flux and cross-section to 
reduce systematics at far detector

High event rate, same detector technology and 
target nuclei as far detector

Moves vertically in ~50 m tall pit
measuring different off-axis angles gives different ν 
energy spectra
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Hyper-K’s WC detectors
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Off-axis spanning detector

ν energy spectrum depends on angle off-axis 
to the neutrino beam

Far detector @ 2.5° for peak at ~600 MeV

Moving IWCD varies angle, allowing 
measurements at different energies

Linear combinations allows mimicking mono- 
chromatic beam or far-detector spectrum
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Hyper-K’s WC detectors
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Also under investigation: Combining 50 cm PMTs + multi-PMT modules in far detector

8 cm PMTs: Better position resolution
                    < 1 ns timing resolution
Additional directionality information

Need reconstruction to exploit additional information  

Necessary for smaller detector size

Multi-PMT modules
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Hyper-K’s physics goals
Long-baseline neutrino oscillations: CP violation

26

10 years with 1.3MW, T2K 2018 systematic error

Combine beam and atmospheric neutrino observations for maximum sensitivity
● δCP precision comes mostly through difference in P(νμ→νe) vs P(ν̅μ→ν̅e)
● Effect of δCP can be degenerate with normal vs inverted mass ordering 
● Atmospheric ν’s gain sensitivity to mass ordering by exploiting matter effect 

of Earth on oscillations
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Hyper-K’s physics goals
Long-baseline neutrino oscillations: CP violation

27

Oscillation maximum is at around 0.6 GeV
● Dominant signal νe interaction is charged current quasielastic (CCQE)
● Potential background sources:

○ Neutral current interactions (νe or νμ) producing neutral pions or gammas
○ Muons from νμ misidentified as electrons from νe

CCQE signal

backgrounds
NCπ0 NCγ
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Hyper-K’s physics goals
Neutrino astrophysics
● Solar ν’s: day/night asymmetry; hep ν’s;

8B ν spectrum upturn
● Supernova ν’s: 1000’s ν events for nearby 

supernova pointing, time & spectrum 
analysis; search for supernova relic ν’s

28

Proton decay
● Search to order of 

magnitude greater lifetime 
than current limit

● 1035 years for p ⟶ e+ + π0

● 3×1034 years for p ⟶ ν̅ + K+
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Reconstruction for WC detectors

29

Take raw detector data and determine the 
physics that occured

● Particle type identification
○ Separate signal events

 from background

● Particle momentum, direction, position
○ Kinematics essential to determine incoming neutrino energy for 

neutrino oscillation probability

● Separating & reconstructing multi-ring events
○ Events with multiple particles / rings 

contribute to both signal & background
○ Multiple neutrinos can interact around the 

same time in IWCD

π0

e

μ
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Physics Motivations
New opportunities beyond simple reconstruction improvement

● NC γ discrimination and measurement

● Bottom-up calibration: Enable multitude of detector parameter variations

● Potential neutron tagging 
application
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Traditional reconstruction method
fiTQun: Likelihood-based reconstruction for higher energies
● Originally developed for Super-K detector

○ Based on algorithm of MiniBooNE: https://arxiv.org/abs/0902.2222

● Uses full information of unhit PMTs + time & charge of hit PMTs: 

● Probabilities calculated based on direct + scattered + reflected light

● Likelihood ratios used to distinguish particle types and single-ring / 
multi-ring event topology hypotheses

31

Probability of 
no hit at PMT

Probability of 
hit at PMT

Hit charge 
probability density

Hit time probability 
density

Likelihood to 
maximise

Candidate event 
hypothesis

https://arxiv.org/abs/0902.2222
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WatChMaL: cross-collaboration group formed to explore ML for WC

Common challenges for ML with WC detectors
● Cylindrical geometry
● High-resolution, sparse data

Many physics goals
● Maximise precision of new detectors
● Reconstruct complex event topologies
● Discriminate electron and gamma rings
● Improving detector calibration & systematics

Machine learning reconstruction

32

WatChMaL.org
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CNN Architecture

33

Network based on ResNet-18 CNN architecture [arXiv:1512.03385]
● Replaced initial 7x7 pixel convolution with 1x1 convolutions over all channels

○ Equivalent to convolution over the 19 PMTs within each mPMT
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repeat
...

P(μ±)P(e±) P(π0) P(γ)

1. Convolution over mPMTs 2. Standard CNN convolutions & down-samples

3. Fully connected 
neural network

1x1 pixel convolution over 
the mPMT channels
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image depth
(PMTs in mPMT)

1x1 convolution

CNN architecture
Treating each PMT inside mPMT as a channel, starting with 1x1 convolution
➔ equivalent to doing a ‘convolution’ over each mPMT

34

Equivalent operation

features
features
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CNN architecture 
Convolutional neural networks hugely successful in image processing

image or 
feature map convolution features

 
 

 
 

 
● End with 1-D array of features, feed into traditional fully-connected neural network
● Learn convolution and final network weights through ‘back-propagation’ of loss

repeat

© User:Aphex34 / Wikimedia Commons / CC-BY-SA-4.0

 
 

 
● Downsample image (e.g. 2x2 max-pooling)

○ Decreases number of pixels

 
● Scan many small (e.g. 3x3) convolution kernels across image

○ Increases number of features

● Start with image with pixel values (‘features’): T and Q at each PMT

35

https://commons.wikimedia.org/wiki/User:Aphex34
https://commons.wikimedia.org/
https://creativecommons.org/licenses/by-sa/4.0/
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CNN architecture

Mostly using ResNet-18 architecture [arXiv:1512.03385]
● Initial 1x1 convolution added to act on the 19 PMTs of each mPMT
● Also explored deeper networks with small improvement

Full cylinder of mPMTs is unwrapped onto 40x40 image
● 38 channels: charge & time of 19 PMTs per mPMT
● No special treatment for geometrical effects at 

boundary between barrel and end-caps
● Data augmented by reflecting / rotating around tank axis

19 for charge
+19 for time

36
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‘Double cover’ images

37

‘Padding’ the image improves accuracy for 
some events

● Original image ‘slices’ along barrel at 
arbitrary position

● Some events have rings that span this 
slice

● Repeat part of the image after rotating 
tank to help CNN learn events where 
ring is sliced

Padding

Rearranging and duplicating in a more 
complex pattern has additional advantages

● All segments appear exactly twice
● Circular boundary conditions in both 

directions
● Minimal blank space

Double cover

Co-op student: S. Mittal
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Topological map to square
Alternative map onto square with boundary 
conditions preserving topology of cylinder

● Cut open along barrel to centre of 
end caps (solid line)

● Deform onto square, keeping  density 
of PMTs constant

● Place mPMTs onto nearest pixel

● Use boundary conditions identifying 
edges of square (indicated by arrows)
○ Pad image with copy of pixels from 

the corresponding edge
38



NuFact 2022, Salt Lake City, Utah, 4th August 2022

t q x y z

t q x y z

t q x y z

PointNet architecture
PointNet designed to work on ‘point clouds’ rather than 
images of pixels

● Each hit PMT is a ‘point’ with time, charge & 
position, not fixed to grid

● Convolution-like operations act on each point’s 
charge, time and position

● Learn global transformations applied to all points
● Single pooling layer from all points to 1D array
● Can apply to any detector geometry

39
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on point cloud)

features
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PointNet architecture
Some changes to standard PointNet give improvements
● Severe overfitting until max. features reduced from 1024 to 256

○ Possibly due to limited batch size with larger network
○ Data augmentation could also help

● We find that mean pool works better than standard max pool here
○ PointNet usually picks key points to learn features, but aggregating 

information from all points seems better for our tasks

40

Using maxpool Using meanpool
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PointNet architecture

In MLP layers, each point is treated identically with shared weights
● Similar to each pixel treated the identically in a CNN
● But without downsampling, information does not transfer between points

Instead ‘T-Nets’, resembling PointNet, learn transformations of the points
● Linear transformation is learnt to e.g. rotate all input vectors
● Feature transform allows global information to affect individual points

Single downsampling layer at the end of the network collapses all points
41
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Initial studies to classify μ / π0 / e / γ particle types
● μ vs e is classified extremely well by 

traditional methods (>99% accuracy)
● e vs π0 works reasonably well, but could 

be improved
● e vs γ has not been used successfully 

with traditional methods

Simulated 3M of each type in IWCD detector
● 0 - 1 GeV energy above threshold
● Uniform positions, isotropic directions
● Split full dataset into 50% : 10% : 40% 

for training : validation : testing

Particle type classification
muon

electron

42

mPMT: 19 x 3” PMTs

9 
ro

w
s

10 mPMT “diameter”

40 columns
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Position, direction, energy reconstruction
Similar ResNet and PointNet architectures as used for classification
● Output reconstructed quantities instead of classification variables
● Use Huber loss to minimise true-reconstructed residuals
● ResNet is outperforming fiTQun at energy and direction reconstruction

43
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Position, direction, energy reconstruction

44

● ResNet is now 
outperforming fiTQun overall 
at position reconstruction 

● PointNet currently 
underperforming compared 
to ResNet

Much better in 
longitudinal 
direction
(along direction 
of particle track)

But worse in 
transverse direction



NuFact 2022, Salt Lake City, Utah, 4th August 2022

Position, direction, energy reconstruction

45

● Improvement in reconstruction with ML mainly in events close to detector wall
○ Approximations in likelihood calculation break down when close to PMTs
○ Could allow expansion of detector fiducial volume to allow increased statistics

● ML reconstruction could be improved at lower energy
○ potentially struggles to learn reconstruction of sparse events
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Cherenkov ring generator

Investigating hybrid method using generative network
● Generative network can predict PMT hit charge and time
● Use to replace likelihoods in traditional reconstruction
● Combine learning ability of CNN with physics domain knowledge of 

traditional reconstruction
● Simple replacement for existing reconstruction in full analysis chain

46
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Cherenkov ring generator

Network outputs likelihoods for hits observed at PMT
● Probability of PMT being hit
● Gaussian pdf (μ, σ) for charge

47
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Cherenkov ring generator
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Generative networks

49
GAN generated events Geant4 simulated events

Also considering using generative networks 
for improved detector systematics
● Train generative network to reproduce 

real data: removed dependence on MC
● Train GAN to take simulated event and 

make it look like real data
○ Reduce detector systematics by

‘fixing’ mismodelled detector
simulation

● Initial work on VAE showed some 
promise, but struggled with noise 
and sharp details

● Now we are investigating GANs

arXiv:
1911.02369


